

    
      
          
            
  


Welcome to traval’s documentation!

Python package for applying automatic error detection algorithms to timeseries.

This module is set up to provide tools for applying any error detection
algorithm to any timeseries. The module consists of three main components:


	Detector: a data management object for storing timeseries and error detection results.


	RuleSet: the RuleSet object is a highly flexible object for defining error detection algorithms based on (user-defined) functions.


	SeriesComparison*: objects for comparing timeseries. These objects include plots for visualizing the comparisons.




The general workflow consists of the following steps:


	Define error detection algorithm(s).


	Load data, i.e. raw timeseries data and optionally timeseries representing the “truth” to see how well the algorithms perform.


	Initialize Detector objects and apply algorithms to timeseries.


	Store and analyze the results.




For more detailed information and examples, please refer to the notebooks in
the examples directory.
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Getting Started


Installation

To install traval, a working version of Python 3.7 or 3.8 has to be installed on
your computer. We recommend using the Anaconda Distribution with Python 3.7 as
it includes most of the python package dependencies and the Jupyter Notebook
software to run the notebooks. However, you are free to install any
Python distribution you want.

To install traval, use:

pip install traval





To install in development mode, clone the repository, then type the following
from the module root directory:

pip install -e .







Usage

The basic usage of the module is described below. To start using the module,
import the package:

import traval





The first step is generally to define an error detection algorithm. This is
done with the RuleSet object:

ruleset = traval.RuleSet("my_first_algorithm")





Add a detection rule (using a general rule from the library contained within
the module). In this case the rule states any value above 10.0 is suspect:

ruleset.add_rule("rule1",
                 traval.rulelib.rule_ufunc_threshold ,
                 apply_to=0,
                 kwargs={"ufunc": (np.greater,), "threshold": 10.0}
                 )





Take a look at the ruleset by just typing ruleset:

ruleset





RuleSet: 'my_first_algorithm'
   step: name            apply_to
      1: rule1                  0





Next define a Detector object. This object is designed to store a timeseries
and the intermediate and final results after applying an error detection
algorithm. Initialize the Detector object with some timeseries. In this example
we assume there is a timeseries called raw_series:

detect = traval.Detector(raw_series)





Apply our first algorithm to the timeseries.

detect.apply_ruleset(ruleset)





By default, the result of each step in the algorithm is compared to the
original series and stored in the detect.comparisons attribute. Take a
look at the comparison between the raw data and the result of the error
detection algorithm.

Since we only defined one step, step 1 represents the final result.

cp = detect.comparisons[1]  # result of step 1 = final result





The SeriesComparison* objects contain methods to visualize the comparison,
or summarize the number of observations in each category:

cp.plots.plot_series_comparison()  # plot a comparison
cp.summary  # series containing number of observations in each category





For more detailed explanation and more complex examples, see the notebook(s)
in the examples directory.





            

          

      

      

    

  

    
      
          
            
  


Examples

The following notebooks contain examples showcasing traval.

The first example shows how to apply the tools contained in traval to detect errors in a single timeseries.
The second example shows how the same can be done for a full dataset with lots of timeseries.



	Example 1: Applying an automatic error detection algorithm to a timeseries

	Example 2: Applying an error detection algorithm to a full dataset








            

          

      

      

    

  

    
      
          
            
  


Example 1: Applying an automatic error detection algorithm to a timeseries

Created by Davíd Brakenhoff, Artesia, May 2020

This notebook contains a simple example how to set up an automatic error detection algorithm based on a few simple rules and applies those rules to a groundwater timeseries.

First import the requisite packages:


[1]:





import os
import numpy as np
import pandas as pd

import traval
from traval import rulelib as rlib








Data

Load the data. The following information is available: - The raw groundwater levels (with all the measurement errors still in the timeseries). - The manually validated timeseries (this is what we consider as the ‘truth’). Of course the manual validation isn’t always perfect, but since it’s all we have to compare with we’re using this as our ‘truth’. We assume our manual validation is good, so hopefully our error detection algorithm yields similar results to the manual validation. - The sensor
level in meters relative to NAP, for checking whether the sensor is above the groundwater level. - The elevation of the top of the piezometer, for checking whether the groundwater level is above this level.


[2]:





datadir = "../data/"
raw = pd.read_csv(os.path.join(datadir, "raw_series.csv"), index_col=[0], parse_dates=True).squeeze()
truth = pd.read_csv(os.path.join(datadir, "manual_validation_series.csv"), index_col=[0], parse_dates=True).squeeze()
truth.name = "manual validation"
sensor_level = pd.read_csv(os.path.join(datadir, "sensor_level_nap.csv"), index_col=[0], parse_dates=True).squeeze()
top_piezometer = pd.read_csv(os.path.join(datadir, "top_piezometer_level.csv"), index_col=[0], parse_dates=True).squeeze()









The error detection algorithm and the RuleSet object

The detection algorithm consists of 3 checks and an extra step to combine the results of those three checks: 1. Check for spikes (when groundwater level suddenly changes and returns to its original level one timestep later). 2. Check if sensor is above groundwater level. 3. Check if groundwater level is above top of piezometer (if the piezometer is closed this is possible, but in this case we know it isn’t). 4. Combine the results of checks 1 to 3 to yield the final result.

The error detection algorithm is entered using the RuleSet object. This is an object that can hold any number of error detection rules and apply those to a timeseries. With the RuleSet.add_rule() method, rules can be added to the algorithm. Ading a rule requires the following input: - name: name of the rule (user-specified) - func: the function to apply to the timeseries - apply_to: an integer indicating to which timeseries the rule should be applied. The original timeseries
is 0, the outcome from step 1 is 1, etc. - kwargs: a dictionary containing any other arguments required by the functions that are passed.

The final rule we add doesn’t check for errors but combines the results from the previous three steps to create one final timeseries that includes the outcome from each of the preceding rules. In this case apply_to is a tuple of ints referencing the results that should be combined. In this case it says to combine the results from steps 1, 2 and 3.


[4]:





# initialize RuleSet object
rset = traval.RuleSet(name="basic")

# add rules
rset.add_rule("spikes", rlib.rule_spike_detection, apply_to=0,
              kwargs={"threshold": 0.15, "spike_tol": 0.15, "max_gap": "7D"})
rset.add_rule("dry", rlib.rule_ufunc_threshold, apply_to=0,
              kwargs={"ufunc": (np.less,), "threshold": sensor_level, "offset": 0.025})
rset.add_rule("hardmax", rlib.rule_ufunc_threshold, apply_to=0,
              kwargs={"ufunc": (np.greater,), "threshold": top_piezometer})
rset.add_rule("combine", rlib.rule_combine_nan_or, apply_to=(1, 2, 3))







The view of the object shows which rules have been added:


[5]:





# view object
rset








[5]:







RuleSet: 'basic'
  step: name            apply_to
     1: spikes                 0
     2: dry                    0
     3: hardmax                0
     4: combine         (1, 2, 3)






The RuleSet object can be stored as pickle file or as JSON. - to_pickle: This option has full support for custom functions and is the most flexible and is therefore recommended. The file is not human readable however. - to_json: Storing as a JSON file has the advantage of creating a human readable file, but it only supports default functions from traval.rulelib. So custom functions will not be preserved when saving in this format.


[6]:





rset.to_pickle('test.pkl')
rset2 = traval.RuleSet.from_pickle("test.pkl")













RuleSet written to file: 'test.pkl'







[7]:





rset.to_json("test.json")
rset3 = traval.RuleSet.from_json("test.json")













RuleSet written to file: 'test.json'












/home/david/Github/traval/traval/ruleset.py:436: UserWarning: Custom functions will not be preserved when storing RuleSet as JSON file!
  warnings.warn(msg)






Delete the two files we just created.


[8]:





for f in ["test.json", "test.pkl"]:
    os.remove(f)









The Detector object

The Detector object provides tools for storing a timeseries, applying an algorithm built with the RuleSet object and processing the outcomes. We initialize the objet with the raw data timeseries in which we want to find the erroneous measurements. Optionally we can add a “truth” series to compare the outcome of our error detection algorithm to.


[9]:





detector = traval.Detector(raw, truth=truth)
detector








[9]:







Detector: <DEUR033_G>






Apply our custom algorithm. The compare=True creates SeriesComparison objects for the result of each step in the algorithm. These objects compare the result of a error detection step with the original timeseries or the ‘truth’ if available. The object also includes methods to plot the comparison results.


[10]:





detector.apply_ruleset(rset, compare=True)







Plot an overview of the results. This creates one plot per rule and highlights which points were marked as suspect based on that rule.


[11]:





axes = detector.plot_overview()












[image: ../_images/examples_ex01_introduction_traval_18_0.png]




The results with the flagged values as NaNs in the original series can be obtained with detector.get_results_dataframe().


[12]:





results = detector.get_results_dataframe()
results.head()








[12]:
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Example 2: Applying an error detection algorithm to a full dataset

Created by Davíd Brakenhoff, Artesia, May 2020

Use Aa en Maas divers dataset consisting of 484 piezometers to test new traval module. - Requires pystore - Requires hydropandas - Requires data in pystore format as prepared by scripts in the traval_data module


[1]:





import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pystore
from tqdm.notebook import tqdm
import hydropandas as hpd
import traval
from traval import rulelib as rlib








Load data


[2]:





pystore_path = "/home/david/Github/traval-data/extracted_data/pystore"
pystore_name = "aaenmaas"








[3]:





items = ["GW.meting.ruw"]
raw_obs = hpd.ObsCollection.from_pystore(pystore_name,
                                        pystore_path,
                                        collection_names=None,
                                        item_names=items,
                                        nameby="collection",
                                        read_series=True,
                                        verbose=False,
                                        progressbar=True)

items = ["GW.meting.totaalcorrectie"]
val_obs = hpd.ObsCollection.from_pystore(pystore_name,
                                        pystore_path,
                                        collection_names=None,
                                        item_names=items,
                                        nameby="collection",
                                        read_series=True,
                                        verbose=False,
                                        progressbar=True)













100%|██████████| 484/484 [00:11<00:00, 42.06it/s]
100%|██████████| 484/484 [00:17<00:00, 27.88it/s]








Helper functions for obtaining additional timeseries


[4]:





pystore.set_path(pystore_path)
store = pystore.store(pystore_name)

def get_mph_series(name):
    """Get piezometer height from pystore.
    """
    coll = store.collection(name)
    meetpuntNAP_df = coll.item('Meetpunt.hoogte').to_pandas()
    return meetpuntNAP_df.value


def get_threshold_series(name):
    """Get level below which sensor is dry from pystore."""
    coll = store.collection(name)
    inhangdiepte_df = coll.item('Inhang.diepte').to_pandas()
    inhangdiepte = inhangdiepte_df.value.iloc[0]
    meetpuntNAP_df = coll.item('Meetpunt.hoogte').to_pandas()
    meetpuntNAP = meetpuntNAP_df.value.iloc[0]
    threshold_series = meetpuntNAP_df.value - inhangdiepte_df.value
    return threshold_series









Define error detection algorithm

BASIC method from TRAVAL study.


[6]:





# initialize RuleSet object
rset = traval.RuleSet(name="basic")

# add rules
rset.add_rule("spikes", rlib.rule_spike_detection, apply_to=0, kwargs={"threshold": 0.15, "spike_tol": 0.15, "max_gap": "7D"})
rset.add_rule("dry", rlib.rule_ufunc_threshold, apply_to=0, kwargs={"ufunc": (np.less,), "threshold": get_threshold_series, "offset": 0.05})
rset.add_rule("hardmax", rlib.rule_ufunc_threshold, apply_to=0, kwargs={"ufunc": (np.greater,), "threshold": get_mph_series})
rset.add_rule("combine", rlib.rule_combine_nan_or, apply_to=(1, 2, 3))

# view object
rset








[6]:







RuleSet: 'basic'
  step: name            apply_to
     1: spikes                 0
     2: dry                    0
     3: hardmax                0
     4: combine         (1, 2, 3)








Error detection

Do some pre-processing on timeseries prior to running error detection: - Create synthetic raw timeseries (remove unlabeled adjustments to timeseries) - Ensure all labeled errors are set to np.nan in truth series (this means they are counted as erroneous observations). - Recategorize some comments.


[7]:





dlist = {}

for name in tqdm(raw_obs.index.intersection(val_obs.index)):

    # get raw data
    raw = raw_obs.loc[name, "obs"]["value"]
    raw.name = name

    # get truth
    truth = val_obs.loc[name, "obs"].loc[:, ["value", "comment"]]

    # set all commented data to np.NaN
    truth.loc[truth.comment != "", "value"] = np.nan
    truth.loc[truth.comment == "vorst", "comment"] = "onbetrouwbare meting"

    # rename columns
    truth.columns = ["manual validation", "comment"]

    # create synthetic raw (only keeps values for labeled changes)
    synth_raw = traval.ts_utils.create_synthetic_raw_timeseries(raw, truth["manual validation"], truth["comment"])
    synth_raw.name = name

    # create detector object and apply algorithm
    detector = traval.Detector(synth_raw, truth=truth)
    detector.apply_ruleset(rset, compare=[-1])

    # store object
    dlist[name] = detector



















Calculate statistics

For full dataset and for individual timeseries


[8]:





fpr = []
tpr = []

# initialize empty BinaryClassifier
bc_sum = traval.BinaryClassifier(0, 0, 0, 0)

for k, dct in dlist.items():

    # get TPR and FPR
    itpr = dct.comparisons[4].bc.true_positive_rate
    ifpr = dct.comparisons[4].bc.false_positive_rate
    tpr.append(itpr)
    fpr.append(ifpr)

    # add binary classification result,
    # the '+' is overloaded to allow adding of the two
    bc_sum = bc_sum + dct.comparisons[4].bc







Calculate confusion matrix for full dataset.


[9]:





bc_sum.confusion_matrix?













Signature: bc_sum.confusion_matrix(as_array=False)
Docstring:
Calculate confusion matrix.

Confusion matrix shows the performance of the algorithm given a
certain truth. An abstract example of the confusion matrix:

                |     Algorithm     |
                |-------------------|
                |  error  | correct |
------|---------|---------|---------|
      |  error  |   TP    |   FN    |
Truth |---------|---------|---------|
      | correct |   FP    |   TN    |
------|---------|---------|---------|

where:
- TP: True Positives  = errors correctly detected by algorithm
- TN: True Negatives  = correct values correctly not flagged by algorithm
- FP: False Positives = correct values marked as errors by algorithm
- FN: False Negatives = errors not detected by algorithm

Parameters
----------
as_array : bool, optional
    return data as array instead of DataFrame, by default False

Returns
-------
data : pd.DataFrame or np.array
    confusion matrix
File:      ~/Github/traval/traval/binary_classifier.py
Type:      method







The confusion matrix summarizes the performance of the algorithm. The diagonal entries show in how many cases the algorithm was correct in identifying errors or correct measurements, as compared to the “truth”: the manually validated timeseries. The off-diagonal entries show the cases where the algorithm was incorrect, either by erroneously classifying a good measurement as an error, or not identifying an erroneous measurement.


[10]:





bc_sum.confusion_matrix()








[10]:
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API Documentation


Detector


	
class traval.detector.Detector(series, truth=None)

	Detector object for applying error detection algorithms to timeseries.

The Detector is used to apply error detection algorithms to a timeseries
and optionally contains a ‘truth’ series, to which the error detection
result can be compared. An example of a ‘truth’ series is a manually
validated timeseries. Custom error detection algorithms can be defined
using the RuleSet object.


	Parameters

	
	series (pd.Series or pd.DataFrame) – timeseries to check


	truth (pd.Series or pd.DataFrame, optional) – series that represents the ‘truth’, i.e. a benchmark to which
the error detection result can be compared, by default None








Examples

Given a timeseries ‘series’ and some ruleset ‘rset’:

>>> d = Detector(series)
>>> d.apply_ruleset(rset)
>>> d.plot_overview()






See also


	traval.RuleSet
	object for defining detection algorithms








	
static _validate_input_series(series)

	Internal method for checking type and dtype of series.


	Parameters

	series (object) – timeseries to check, must be pd.Series or pd.DataFrame. Datatype
of series or first column of DataFrame must be float.



	Raises

	TypeError – if series or dtype of series does not comply










	
apply_ruleset(ruleset, compare=True)

	Apply RuleSet to series.


	Parameters

	
	ruleset (traval.RuleSet) – RuleSet object containing detection rules


	compare (bool or list of int, optional) – if True, compare all results to original series and store in
dictionary under comparisons attribute, default is True. If False,
do not store comparisons. If list of int, store only those step
numbers as comparisons. Note: value of -1 refers to last step
for convenience.









See also


	traval.RuleSet
	object for defining detection algorithms












	
confusion_matrix(steps=None, truth=None)

	Calculate confusion matrix stats for detection rules.

Note: the calculated statistics per rule contain overlapping counts,
i.e. multiple rules can mark the same observatin as suspect.


	Parameters

	
	steps (int, list of int or None, optional) – steps for which to calculate confusion matrix statistics, by
default None which uses all steps.


	truth (pd.Series or pd.DataFrame, optional) – series representing the “truth”, i.e. a benchmark to which the
resulting series is compared. By default None, which uses the
stored truth series. Argument is included so a different truth
can be passed.






	Returns

	df – dataframe containing confusion matrix data, i.e. counts of true
positives, false positives, true negatives and false negatives.



	Return type

	pd.DataFrame










	
get_comment_series(steps=None)

	




	
get_corrections_comparison(truth=None)

	




	
get_corrections_dataframe()

	Get DataFrame containing corrections.


	Returns

	df – DataFrame containing corrections. NaN means value is flagged
as suspicious, 0.0 means no correction.



	Return type

	pandas.DataFrame










	
get_final_result()

	Get final timeseries with flagged values set to NaN.


	Returns

	series – Timeseries produced by final step in RuleSet with flagged
values set to NaN.



	Return type

	pandas.Series










	
get_indices(category, step, truth=None)

	




	
get_results_dataframe()

	Get results as DataFrame.


	Returns

	df – results with flagged values set to NaN per applied rule.



	Return type

	pandas.DataFrame










	
get_series(step, category=None)

	




	
plot_overview(mark_suspects=True, **kwargs)

	Plot timeseries with flagged values per applied rule.


	Parameters

	mark_suspects (bool, optional) – mark suspect values with red X, by default True



	Returns

	ax – axes objects



	Return type

	list of matplotlib.pyplot.Axes










	
reset()

	Reset Detector object.






	
set_truth(truth)

	Set ‘truth’ series.

Used for comparison with detection result.


	Parameters

	truth (pd.Series or pd.DataFrame) – Series or DataFrame containing the “truth”, i.e. a benchmark
to compare the detection result to.










	
stats_per_comment(step=None, truth=None)

	




	
uniqueness(truth=None)

	Calculate unique contribution per rule to stats.

Note: the calculated statistics per rule contain an undercount,
i.e. when multiple rules mark the same observatin as suspect it is
not contained in this result.


	Parameters

	
	steps (int, list of int or None, optional) – steps for which to calculate confusion matrix statistics, by
default None which uses all steps.


	truth (pd.Series or pd.DataFrame, optional) – series representing the “truth”, i.e. a benchmark to which the
resulting series is compared. By default None, which uses the
stored truth series. Argument is included so a different truth
can be passed.






	Returns

	df – dataframe containing confusion matrix data, i.e. unique counts
of true positives, false positives, true negatives and
false negatives.



	Return type

	pd.DataFrame















RuleSet


	
class traval.ruleset.RuleSet(name=None)

	Create RuleSet object for storing detection rules.

The RuleSet object stores detection rules and other relevant information
in a dictionary. The order in which rules are carried out, the functions
that parse the timeseries, the extra arguments required by those functions
are all stored together.

The detection functions must take a series as the first argument, and
return a series with corrections based on the detection rule. In the
corrections series invalid values are set to np.nan, and adjustments are
defined with a float. No change is defined as 0. Extra keyword arguments
for the function can be passed through a kwargs dictionary. These kwargs
are also allowed to contain functions. These functions must return some
value based on the name of the series.


	Parameters

	name (str, optional) – name of the RuleSet, by default None





Examples

Given two detection functions ‘foo’ and ‘bar’:

>>> rset = RuleSet(name="foobar")
>>> rset.add_rule("foo", foo, apply_to=0)  # add rule 1
>>> rset.add_rule("bar", bar, apply_to=1, kwargs={"n": 2})  # add rule 2
>>> print(rset)  # print overview of rules






	
add_rule(name, func, apply_to=None, kwargs=None)

	Add rule to RuleSet.


	Parameters

	
	name (str) – name of the rule


	func (callable) – function that takes series as input and returns
a correction series.


	apply_to (int or tuple of ints, optional) – series to apply the rule to, by default None, which defaults to the
original series. E.g. 0 is the original series, 1 is the result of
step 1, etc. If a tuple of ints is passed, the results of those
steps are collected and passed to func.


	kwargs (dict, optional) – dictionary of additional keyword arguments for func, by default
None. Additional arguments can be functions as well, in which case
they must return some value based on the name of the series to
which the RuleSet will be applied.













	
del_rule(name)

	Delete rule from RuleSet.


	Parameters

	name (str) – name of the rule to delete










	
classmethod from_json(fname)

	Load RuleSet object from JSON file.

Attempts to load functions in the RuleSet by searching for the
function name in traval.rulelib. If the function cannot be found, only
the name of the function is preserved. This means a RuleSet
with custom functions will not be fully functional when loaded
from a JSON file.


	Parameters

	fname (str) – filename or path to file



	Returns

	RuleSet object



	Return type

	RuleSet






See also


	to_json
	store RuleSet as JSON file (does not support custom functions)



	to_pickle
	store RuleSet as pickle (supports custom functions)



	from_pickle
	load RuleSet from pickle file












	
classmethod from_pickle(fname)

	Load RuleSet object form pickle file.


	Parameters

	fname (str) – filename or path to file



	Returns

	RuleSet object, including custom functions and parameters



	Return type

	RuleSet






See also


	to_pickle
	store RuleSet as pickle (supports custom functions)



	to_json
	store RuleSet as json file (does not support custom functions)



	from_json
	load RuleSet from json file












	
to_dataframe()

	Convert RuleSet to pandas.DataFrame.


	Returns

	rdf – DataFrame containing all the information from the RuleSet



	Return type

	pandas.DataFrame










	
to_json(fname, verbose=True)

	Write RuleSet to disk as json file.

Note that it is not possible to write custom functions to a JSON
file. When writing the JSON only the name of the function is stored.
When loading a JSON file, the function name is used to search within
traval.rulelib. If the function can be found, it loads that
function. A RuleSet making use of functions in the default rulelib.


	Parameters

	
	fname (str) – filename or path to file


	verbose (bool, optional) – prints message when operation complete, default is True









See also


	from_json
	load RuleSet from json file



	to_pickle
	store RuleSet as pickle (supports custom functions)



	from_pickle
	load RuleSet from pickle file












	
to_pickle(fname, verbose=True)

	Write RuleSet to disk as pickle.


	Parameters

	
	fname (str) – filename or path of file


	verbose (bool, optional) – prints message when operation complete, default is True









See also


	from_pickle
	load RuleSet from pickle file



	to_json
	store RuleSet as json file (does not support custom functions)



	from_json
	load RuleSet from json file












	
update_rule(name, func, apply_to=None, kwargs=None)

	Update rule in RuleSet.


	Parameters

	
	name (str) – name of the rule


	func (callable) – function that takes series as input and returns
a correction series.


	apply_to (int or tuple of ints, optional) – series to apply the rule to, by default None, which defaults to the
original series. E.g. 0 is the original series, 1 is the result of
step 1, etc. If a tuple of ints is passed, the results of those
steps are collected and passed to func.


	kwargs (dict, optional) – dictionary of additional keyword arguments for func, by default
None. Additional arguments can be functions as well, in which case
they must return some value based on the name of the series to
which the RuleSet will be applied.

















	
class traval.ruleset.RuleSetEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	
	
default(o)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
    try:
        iterable = iter(o)
    except TypeError:
        pass
    else:
        return list(iterable)
    # Let the base class default method raise the TypeError
    return JSONEncoder.default(self, o)















Rule Library


	
traval.rulelib.rule_combine_nan_and(*args)

	Combination rule, combine NaN values for any number of timeseries.

Used for combining intermediate results in branching algorithm trees to
create one final result, i.e. (s1.isna() AND s2.isna())


	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Contains NaNs where any of the input series
values is NaN.



	Return type

	pd.Series










	
traval.rulelib.rule_combine_nan_or(*args)

	Combination rule, combine NaN values for any number of timeseries.

Used for combining intermediate results in branching algorithm trees to
create one final result, i.e. (s1.isna() OR s2.isna())


	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Contains NaNs where any of the input series
values is NaN.



	Return type

	pd.Series










	
traval.rulelib.rule_diff_outside_of_n_sigma(series, n, max_gap='7D')

	Detection rule, calculate diff of series and identify suspect.

observations based on values outside of n * standard deviation of the
difference.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	n (float, optional) – number of standard deviations to use, by default 2


	max_gap (str, optional) – only considers observations within this maximum gap
between measurements to calculate diff, by default “7D”.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_diff_ufunc_threshold(series, ufunc, threshold, max_gap='7D')

	Detection rule, flag values based on diff, operator and threshold.

Calculate diff of series and identify suspect observations based on
comparison with threshold value.

The argument ufunc is a tuple containing a function, e.g. an operator
function (i.e. ‘>’, ‘<’, ‘>=’, ‘<=’). These are passed using their named
equivalents, e.g. in numpy: np.greater, np.less, np.greater_equal,
np.less_equal. This function essentially does the following:
ufunc(series, threshold_series). The argument is passed as a tuple to
bypass RuleSet logic.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	ufunc (tuple) – tuple containing ufunc (i.e. (numpy.greater_equal,) ). The function
must be callable according to ufunc(series, threshold). The function
is passed as a tuple to bypass RuleSet logic.


	threshold (float) – value to compare diff of timeseries to


	max_gap (str, optional) – only considers observations within this maximum gap
between measurements to calculate diff, by default “7D”.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_flat_signal(series, window, min_obs, std_threshold=0.0075, qbelow=None, qabove=None, hbelow=None, habove=None)

	Detection rule, flag values based on dead signal in rolling window.

Flag values when variation in signal within a window falls below a
certain threshold value. Optionally provide quantiles below or above
which to look for dead/flat signals.


	Parameters

	
	series (pd.Series) – timeseries to analyse


	window (int) – number of days in window


	min_obs (int) – minimum number of observations in window to calculate
standard deviation


	std_threshold (float, optional) – standard deviation threshold value, by default 7.5e-3


	qbelow (float, optional) – quantile value between 0 and 1, signifying an upper
limit. Only search for flat signals below this limit.
By default None.


	qabove (float, optional) – quantile value between 0 and 1, signifying a lower
limit. Only search for flat signals above this limit.
By default None.


	hbelow (float, optional) – absolute value in units of timeseries signifying an upper limit.
Only search for flat signals below this limit. By default None.


	habove (float, optional) – absolute value in units of timeseries signifying a lower limit.
Only search for flat signals above this limit. By default None.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Contains NaNs where the signal is considered flat
or dead.



	Return type

	pd.Series










	
traval.rulelib.rule_funcdict_to_nan(series, funcdict)

	Detection rule, flag values with dictionary of functions.

Use dictionary of functions to identify suspect values and set
them to NaN.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	funcdict (dict) – dictionary with function names as keys and functions/methods as
values. Each function is applied to each value in the timeseries
using series.apply(func). Suspect values are those where
the function evaluates to True.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values (according to the provided functions)
are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_keep_comments(series, keep_comments, comment_series, other_series)

	Filter rule, modify timeseries to keep data with certain comments.

This rule was invented to extract timeseries only containing certain
types of errors, based on labeled data. For example, to get only erroneous
observations caused by sensors above the groundwater level:


	series: the raw timeseries


	keep_comments: list of comments to keep, e.g. [‘dry sensor’]


	comment_series: timeseries containing the comments for erroneous obs


	other_series: the validated timeseries where the commented observations
were removed (set to NaN).





	Parameters

	
	series (pd.Series) – timeseries to filter


	keep_comments (list of str) – list of comments to keep


	comment_series (pd.Series) – timeseries containing comments, should have same index as series


	other_series (pd.Series) – timeseries containing corrected/adjusted values corresponding
to the commmented entries.






	Returns

	corrections – timeseries containing NaN values where comment is in keep_comments
and 0 otherwise.



	Return type

	pd.Series










	
traval.rulelib.rule_max_gradient(series, max_step=0.5, max_timestep='1D')

	Detection rule, flag values when maximum gradient exceeded.

Set values tot NaN when maximum gradient between two
observations is exceeded.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	max_step (float, optional) – max jump between two observations within given timestep,
by default 0.5


	timestep (str, optional) – maximum timestep to consider, by default “1D”. The gradient is not
calculated for values that lie farther apart.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_offset_detection(series, threshold=0.15, updown_diff=0.1, max_gap='7D', return_df=False)

	Detection rule, detect periods with an offset error.

This rule looks for jumps in both positive and negative direction that
are larger than a particular threshold. It then tries to match jumps
in upward direction to one in downward direction of a similar size. If
this is possible, all observations between two matching but oppposite
jumps are set to NaN.


	Parameters

	
	series (pd.Series) – timeseries in which to look for offset errors


	threshold (float, optional) – minimum jump to consider as offset error, by default 0.35


	updown_diff (float, optional) – the maximum difference between two opposite jumps to consider them
matching, by default 0.1


	max_gap (str, optional) – only considers observations within this maximum gap
between measurements to calculate diff, by default “7D”.


	return_df (bool, optional) – return the dataframe containing the potential offsets,
by default False






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_other_ufunc_threshold(series, other, ufunc, threshold)

	Detection rule, flag values based on other series and threshold.

Set values to Nan based on comparison of another timeseries with a
threshold value.

The argument ufunc is a tuple containing an operator function (i.e. ‘>’,
‘<’, ‘>=’, ‘<=’). These are passed using their named equivalents, e.g. in
numpy: np.greater, np.less, np.greater_equal, np.less_equal. This function
essentially does the following: ufunc(series, threshold_series). The
argument is passed as a tuple to bypass RuleSet logic.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified, only used
to test if index of other overlaps


	other (pd.Series) – other timeseries based on which suspect values are identified


	ufunc (tuple) – tuple containing ufunc (i.e. (numpy.greater_equal,) ). The function
must be callable according to ufunc(series, threshold). The function
is passed as a tuple to bypass RuleSet logic.


	threshold (float) – value to compare timeseries to






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_outside_bandwidth(series, lowerbound, upperbound)

	Detection rule, set suspect values to NaN if outside bandwidth.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	lowerbound (pd.Series) – timeseries containing the lower bound, if bound values are less
frequent than series, bound is interpolated to series.index


	upperbound (pd.Series) – timeseries containing the upper bound, if bound values are less
frequent than series, bound is interpolated to series.index






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_outside_n_sigma(series, n=2.0)

	Detection rule, set values outside of n * standard deviation to NaN


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	n (float, optional) – number of standard deviations to use, by default 2






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_pastas_outside_pi(series, ml, ci=0.95, min_ci=None, smoothfreq=None, tmin=None, tmax=None, savedir=None, verbose=False)

	Detection rule, flag values based on pastas model prediction interval.

Flag suspect outside prediction interval calculated by pastas timeseries
model. Uses a pastas.Model and a confidence interval as input.


	Parameters

	
	series (pd.Series) – timeseries to identify suspect observations in


	ml (pastas.Model) – timeseries model for series


	ci (float, optional) – confidence interval for calculating bandwidth, by default 0.95.
Higher confidence interval means that bandwidth is wider and more
observations will fall within the bounds.


	min_ci (float, optional) – value indicating minimum distance between upper and lower
bounds, if ci does not meet this requirement, this value is added
to the bounds. This can be used to prevent extremely narrow prediction
intervals. Default is None.


	smoothfreq (str, optional) – str indicating no. of periods and frequency str (i.e. “1D”) for
smoothing upper and lower bounds only used if smoothbounds=True,
default is None.


	tmin (str or pd.Timestamp, optional) – set tmin for model simulation


	tmax (str or pd.Timestamp, optional) – set tmax for model simulation


	savedir (str, optional) – save calculated prediction interval to folder as pickle file.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_shift_to_manual_obs(series, hseries, method='linear', max_dt='1D', reset_dates=None)

	Adjustment rule, for shifting timeseries onto manual observations.

Used for shifting timeseries based on sensor observations onto manual
verification measurements. By default uses linear interpolation between
two manual verification observations.


	Parameters

	
	series (pd.Series) – timeseries to adjust


	hseries (pd.Series) – timeseries containing manual observations


	method (str, optional) – method to use for interpolating between two manual observations,
by default “linear”. Other options are those that are accepted by
series.reindex(): ‘bfill’, ‘ffill’, ‘nearest’.


	max_dt (str, optional) – maximum amount of time between manual observation and value in
series, by default “1D”


	reset_dates (list, optional) – list of dates  (as str or pd.Timestamp) on which to reset the
adjustments to 0.0, by default None. Useful for resetting the
adjustments when the sensor is replaced, for example.






	Returns

	adjusted_series – timeseries containing adjustments to shift series onto manual
observations.



	Return type

	pd.Series










	
traval.rulelib.rule_spike_detection(series, threshold=0.15, spike_tol=0.15, max_gap='7D')

	Detection rule, identify spikes in timeseries and set to NaN.

Spikes are sudden jumps in the value of a timeseries that last 1 timestep.
They can be both negative or positive.


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	threshold (float, optional) – the minimum size of the jump to qualify as a spike, by default 0.15


	spike_tol (float, optional) – offset between value of timeseries before spike and after spike,
by default 0.15. After a spike, the value of the timeseries is usually
close to but not identical to the value that preceded the spike. Use
this parameter to control how close the value has to be.


	max_gap (str, optional) – only considers observations within this maximum gap
between measurements to calculate diff, by default “7D”.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series










	
traval.rulelib.rule_ufunc_threshold(series, ufunc, threshold, offset=0.0)

	Detection rule, flag values based on operator and threshold value.

Set values to Nan based on operator function and threshold value.
The argument ufunc is a tuple containing an operator function
(i.e. ‘>’, ‘<’, ‘>=’, ‘<=’). These are passed using their named
equivalents, e.g. in numpy: np.greater, np.less, np.greater_equal,
np.less_equal. This function essentially does the following:
ufunc(series, threshold).


	Parameters

	
	series (pd.Series) – timeseries in which suspect values are identified


	ufunc (tuple) – tuple containing ufunc (i.e. (numpy.greater_equal,) ). The function
must be callable according to ufunc(series, threshold). The function
is passed as a tuple to bypass RuleSet logic.


	threshold (float or pd.Series) – value or timeseries to compare series with


	offset (float, optional) – value that is added to the threshold, e.g. if some extra tolerance is
allowable. Default value is 0.0.






	Returns

	corrections – a series with same index as the input timeseries containing
corrections. Suspect values are set to np.nan.



	Return type

	pd.Series











Timeseries Comparison


	
class traval.ts_comparison.DateTimeIndexComparison(idx1, idx2)

	Helper class for comparing two DateTimeIndexes.


	
idx_in_both()

	Index members in both DateTimeIndexes.


	Returns

	index with entries in both



	Return type

	DateTimeIndex










	
idx_in_idx1()

	Index members only in Index #1.


	Returns

	index with entries only in index #1



	Return type

	DateTimeIndex










	
idx_in_idx2()

	Index members only in Index #2.


	Returns

	index with entries only in index #2



	Return type

	DateTimeIndex














	
class traval.ts_comparison.SeriesComparison(s1, s2, names=None, diff_threshold=0.0)

	Object for comparing two timeseries.

Comparison yields the following categories:


	in_both_identical: in both series and difference <= than diff_threshold


	in_both_different: in both series and difference > than diff_threshold


	in_s1: only in series #1


	in_s2: only in series #2


	in_both_nan: NaN in both





	Parameters

	
	s1 (pd.Series or pd.DataFrame) – first series to compare


	s2 (pd.Series or pd.DataFrame) – second series to compare


	diff_threshold (float, optional) – value beyond which a difference is considered significant, by
default 0.0. Two values whose difference is smaller than threshold
are considered identical.









	
compare_by_comment()

	Compare series per comment.


	Returns

	comparison – series containing the possible comparison outcomes, but split
into categories, one for each unique comment. Comments must
be passed via series2.



	Return type

	pd.Series



	Raises

	ValueError – if no comment series is found










	
comparison_series()

	Create series that indicates what happend to a value.

Series index is the union of s1 and s2 with a value indicating
the status of the comparison:



	-1: value is modified


	0: value stays the same


	1: value only in series 1


	2: value only in series 2


	-9999: value is NaN in both series








	Returns

	s – series containing status of value from comparison



	Return type

	pd.Series














	
class traval.ts_comparison.SeriesComparisonRelative(s1, truth, base, diff_threshold=0.0)

	Object for comparing two timeseries relative to a third timeseries.

Extends the SeriesComparison object to include a comparison between
two timeseries and a third base timeseries. This is used for example, when
comparing the results of two error detection outcomes to the original
raw timeseries.

Comparison yields both the results from SeriesComparison as well as the
following categories for the relative comparison to the base timeseries:


	kept_in_both: both timeseries and the base timeseries contain values


	flagged_in_s1: value is NaN/missing in series #1


	flagged_in_s2: value is NaN/missing in series #2


	flagged_in_both: value is NaN/missing in both series #1 and series #2


	in_all_nan: value is NaN in all timeseries (series #1, #2 and base)


	introduced_in_s1: value is NaN/missing in base but has value in series #1


	introduced_in_s2: value is NaN/missing in base but has value in series #2


	introduced_in_both: value is NaN/missing in base but has value in both
timeseries





	Parameters

	
	s1 (pd.Series or pd.DataFrame) – first series to compare


	truth (pd.Series or pd.DataFrame) – second series to compare, if a “truth” timeseries is available
pass it as the second timeseries. Stored in object as ‘s2’.


	base (pd.Series or pd.DataFrame) – timeseries to compare other two series with


	diff_threshold (float, optional) – value beyond which a difference is considered significant, by
default 0.0. Two values whose difference is smaller than threshold
are considered identical.









See also


	SeriesComparison
	Comparison of two timeseries relative to each other








	
compare_to_base_by_comment()

	Compare two series to base series per comment.


	Returns

	comparison – Series containing the number of observations in each possible
comparison category, but split per unique comment. Comments must
be provided via ‘truth’ series (series2).



	Return type

	pd.Series



	Raises

	ValueError – if no comment series is available.















Timeseries Utilities


	
traval.ts_utils.bandwidth_moving_avg_n_sigma(series, window, n)

	Calculate bandwidth around timeseries based moving average + n * std.


	Parameters

	
	series (pd.Series) – series to calculate bandwidth for


	window (int) – number of observations to consider for moving average


	n (float) – number of standard deviations from moving average for bandwidth






	Returns

	bandwidth – dataframe with 2 columns, with lower and upper bandwidth



	Return type

	pd.DataFrame










	
traval.ts_utils.create_synthetic_raw_timeseries(raw_series, truth_series, comments)

	Create synthetic raw timeseries.

Updates ‘truth_series’ (where values are labelled with a comment)
with values from raw_series. Used for removing unlabeled changes between
a raw and validated timeseries.


	Parameters

	
	raw_series (pd.Series) – timeseries with raw data


	truth_series (pd.Series) – timeseries with validated data


	comments (pd.Series) – timeseries with comments. Index must be same as ‘truth_series’.
When value does not have a comment it must be an empty string: ‘’.






	Returns

	s – synthetic raw timeseries, same as truth_series but updated with
raw_series where value has been commented.



	Return type

	pd.Series










	
traval.ts_utils.diff_with_gap_awareness(series, max_gap='7D')

	Get diff of timeseries with a limit on gap between two values.


	Parameters

	
	series (pd.Series) – timeseries to calculate diff for


	max_gap (str, optional) – maximum period between two observations for calculating diff, otherwise
set value to NaN, by default “7D”






	Returns

	diff – timeseries with diff, with NaNs whenever two values are farther apart
than max_gap.



	Return type

	pd.Series










	
traval.ts_utils.interpolate_series_to_new_index(series, new_index)

	Interpolate timeseries to new DateTimeIndex.


	Parameters

	
	series (pd.Series) – original series


	new_index (DateTimeIndex) – new index to interpolate series to






	Returns

	si – new series with new index, with interpolated values



	Return type

	pd.Series










	
traval.ts_utils.mask_corrections_as_nan(series, mask)

	Get corrections series with NaNs where mask == True.


	Parameters

	
	series (pd.Series) – timeseries to provide corrections for


	mask (DateTimeIndex or boolean np.array) – DateTimeIndex containing timestamps where value should be set to NaN,
or boolean array with same length as series set to True where
value should be set to NaN. (Uses pandas .loc[mask] to set values.)






	Returns

	c – return corrections series



	Return type

	pd.Series










	
traval.ts_utils.resample_short_series_to_long_series(short_series, long_series)

	Resample a short timeseries to index from a longer timeseries.

First uses ‘ffill’ then ‘bfill’ to fill new series.


	Parameters

	
	short_series (pd.Series) – short timeseries


	long_series (pd.Series) – long timeseries






	Returns

	new_series – series with index from long_series and data from short_series



	Return type

	pd.Series










	
traval.ts_utils.spike_finder(series, threshold=0.15, spike_tol=0.15, max_gap='7D')

	Find spikes in timeseries.

Spikes are sudden jumps in the value of a timeseries that last 1 timestep.
They can be both negative or positive.


	Parameters

	
	series (pd.Series) – timeseries to find spikes in


	threshold (float, optional) – the minimum size of the jump to qualify as a spike, by default 0.15


	spike_tol (float, optional) – offset between value of timeseries before spike and after spike,
by default 0.15. After a spike, the value of the timeseries is usually
close to but not identical to the value that preceded the spike. Use
this parameter to control how close the value has to be.


	max_gap (str, optional) – only considers observations within this maximum gap
between measurements to calculate diff, by default “7D”.






	Returns

	upspikes, downspikes – pandas DateTimeIndex objects containing timestamps of upward and
downward spikes.



	Return type

	pandas.DateTimeIndex










	
traval.ts_utils.unique_nans_in_series(series, *args)

	Get mask where NaNs in series are unique compared to other series.


	Parameters

	
	series (pd.Series) – identify unique NaNs in series


	*args – any number of pandas.Series






	Returns

	mask – mask with value True where NaN is unique to series



	Return type

	pd.Series











Binary Classification


	
class traval.binary_classifier.BinaryClassifier(tp, fp, tn, fn)

	Class for calculating binary classification statistics.


	
property accuracy

	Accuracy of binary classification.


ACC = (TP + TN) / (TP + FP + FN + TN)




where
- TP : True Positives
- TN : True Negatives
- FP : False Positives
- FN : False Negatives






	
confusion_matrix(as_array=False)

	Calculate confusion matrix.

Confusion matrix shows the performance of the algorithm given a
certain truth. An abstract example of the confusion matrix:



Algorithm     |



|-------------------|
|  error  | correct |





	——|---------|———|---------|
	
error  |   TP    |   FN    |





	Truth |---------|———|---------|
	
correct |   FP    |   TN    |







——|---------|———|---------|

where:
- TP: True Positives  = errors correctly detected by algorithm
- TN: True Negatives  = correct values correctly not flagged by algorithm
- FP: False Positives = correct values marked as errors by algorithm
- FN: False Negatives = errors not detected by algorithm


	Parameters

	as_array (bool, optional) – return data as array instead of DataFrame, by default False



	Returns

	data – confusion matrix



	Return type

	pd.DataFrame or np.array










	
property false_discovery_rate

	False discovery rate.


FDR = 1 - PPV = FP / (FP + TP)




where
- TP : True Positives
- FP : False Positives






	
property false_negative_rate

	False Negative Rate = (1 - sensitivity).


FNR = FN / (FN + TP)




where
- FN : False Negatives
- TP : True Positives






	
property false_omission_rate

	False omission rate.


FOR = 1 - NPV = FN / (TN + FN)




where
- TN : True Negatives
- FN : False Negatives






	
property false_positive_rate

	False Positive Rate = (1 - specificity).


FPR = FP / (FP + TN)




where
- FP : False Positives
- TN : True Negatives






	
classmethod from_confusion_matrix(cmat)

	Create BinaryClassifier from confusion matrix.


Note

Confusion Matrix must be passed as an np.array or pd.DataFrame
corresponding to: [[TP, FN], [FP, TN]], like the one returned by
BinaryClassifier.confusion_matrix




	Parameters

	cmat (np.array or pd.DataFrame) – 
	a 2x2 dataset with structure [[TP, FN],
	[FP, TN]]









	Returns

	BinaryClassifier object based on values in confusion matrix.



	Return type

	BinaryClassifier






See also


	BinaryClassifier.confusion_matrix
	for explanation (of abbreviations)












	
classmethod from_series_comparison_relative(comparison)

	Binary Classification object from SeriesComparisonRelative object.


	Parameters

	comparison (traval.SeriesComparisonRelative) – object comparing two timeseries with base timeseries



	Returns

	object for calculating binary classification statistics



	Return type

	BinaryClassifier










	
get_all_statistics(use_abbreviations=True)

	Get all statistics in pandas.Series.


	Parameters

	use_abbreviations (bool, optional) – whether to use abbreviations or full names for
index, by default True



	Returns

	s – series containing all statistics



	Return type

	pandas.Series










	
property informedness

	Informedness statistic (a.k.a. Youden’s J statistic).

Measure of diagnostic performance, and has a zero value when a
diagnostic test gives the same proportion of positive results for
groups with and without a condition, i.e the test is useless.
A value of 1 indicates that there are no false positives or
false negatives, i.e. the test is perfect.

Calculated as:


informedness = specificity + sensitivity - 1.









	
property matthews_correlation_coefficient

	Matthews correlation coefficient (MCC).

The MCC is in essence a correlation coefficient between the observed
and predicted binary classifications; it returns a value between −1
and +1. A coefficient of +1 represents a perfect prediction, 0 no
better than random prediction and −1 indicates total disagreement
between prediction and observation.


	Returns

	phi – the Matthews correlation coefficient



	Return type

	float






See also


	mcc
	convenience method for calculating MCC












	
property mcc

	Convenience method for calculating Matthews correlation coefficient.


	Returns

	phi – the Matthews correlation coefficient



	Return type

	float






See also


	matthews_correlation_coefficient
	more information about the statistic












	
property negative_predictive_value

	Negative predictive value.


NPV = TN / (TN + FN)




where
- TN : True Negatives
- FN : False Negatives






	
property positive_predictive_value

	Positive predictive value (a.k.a. precision).


PPV = TP / (TP + FP)




where
- TP : True Positives
- FP : False Positives






	
property prevalence

	Prevalance of true errors in total population.


Prevalence = (TP + FN) / (TP + FP + FN + TN)




where
- TP : True Positives
- TN : True Negatives
- FP : False Positives
- FN : False Negatives






	
property sensitivity

	Sensitivity or True Positive Rate.

Statistic describing ratio of true positives identified,
which also says something about the avoidance of false negatives.


Sensitivity = TP / (TP + FN)




where
- TP : True Positives
- FN : False Negatives






	
property specificity

	Specificity or True Negative Rate.

Statistic describing ratio of true negatives identified,
which also says something about the avoidance of false positives.


Specificity = TN / (TN + FP)




where
- TN : True Negatives
- FP : False Positives






	
property true_negative_rate

	True Negative Rate. Synonym for specificity.

See specificity for description.






	
property true_positive_rate

	True Positive Rate. Synonym for sensitivity.

See sensitiviy for description.











Plots


	
class traval.plots.ComparisonPlots(cp)

	Mix-in class for plots for comparing timeseries.


	
plot_relative_comparison(mark_unique=True, mark_different=True, mark_identical=True, mark_introduced=False, ax=None)

	Plot comparison between two timeseries relative to base timeseries.


	Parameters

	
	mark_unique (bool, optional) – mark unique observations with colored X’s, by default True


	mark_different (bool, optional) – highlight where series are different in red, by default True


	mark_identical (bool, optional) – highlight where series are identical with green, by default True


	mark_introduced (bool, optional) – mark observations that are not in the base timeseries with X’s,
by default False


	ax (axis, optional) – axis to plot on, by default None






	Returns

	ax – axis handle



	Return type

	axis










	
plot_series_comparison(mark_unique=True, mark_different=True, mark_identical=True, ax=None)

	Plot comparison between two timeseries.


	Parameters

	
	mark_unique (bool, optional) – mark unique values with colored X’s, by default True


	mark_different (bool, optional) – highlight where timeseries differ with red, by default True


	mark_identical (bool, optional) – highlight where timeseries are identical with green,
by default True


	ax (axis, optional) – axis object to plot on, by default None






	Returns

	ax – axis object



	Return type

	axis










	
reset_color_dict()

	Reset color_dict to default values.






	
update_color_dict(key, color=None, alpha=None)

	Update colors for plots.


	Parameters

	
	key (str) – name of category to update, see
ComparisonPlots.color_dict.keys() for options


	color (str, optional) – color name, by default None


	alpha (float, optional) – alpha value, by default None

















	
traval.plots.det_plot(fpr, fnr, labels, ax=None, **kwargs)

	Detection Error Tradeoff plot.

Adapted from scikitlearn DetCurveDisplay.


	Parameters

	
	fpr (list or value or array) – false positive rate. If passed as a list loops through each
entry and plots it. Otherwise just plots the array or value.


	fnr (list or value or array) – false negative rate. If passed as a list loops through each
entry and plots it. Otherwise just plots the array or value.


	labels (list or str) – label for each fpr/fnr entry.


	ax (matplotlib.pyplot.Axes, optional) – axes handle to plot on, by default None, which
creates a new figure






	Returns

	ax – axes handle



	Return type

	matplotlib.pyplot.Axes










	
traval.plots.roc_plot(tpr, fpr, labels, colors=None, ax=None, plot_diagonal=True, colorbar_label=None, **kwargs)

	Receiver operator characteristic plot.

Plots the false positive rate (x-axis) versus the
true positive rate (y-axis). The ‘tpr’ and ‘fpr’ can be passed as:
-  values: outcome of a single error detection algorithm
-  arrays: outcomes of error detection algorithm in which a detection


parameter is varied.





	lists: for passing multiple results, entries can be values or
arrays, as listed above.





	Parameters

	
	tpr (list or value or array) – true positive rate. If passed as a list loops through each
entry and plots it. Otherwise just plots the array or value.


	fpr (list or value or array) – false positive rate. If passed as a list loops through each
entry and plots it. Otherwise just plots the array or value.


	labels (list or str) – label for each tpr/fpr entry.


	ax (matplotlib.pyplot.Axes, optional) – axes to plot on, default is None, which creates new figure


	plot_diagonal (bool, optional) – whether to plot the diagonal (useful for combining multiple
ROC plots)


	**kwargs – passed to ax.scatter






	Returns

	ax – axes instance



	Return type

	matplotlib.pyplot.Axes
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